nth-order feature adjoint sensitivity analysis methodology for response-coupled forward/adjoint linear systems: II. Illustrative application to a paradigm energy system

Author:

Cacuci Dan Gabriel

Abstract

This work presents a representative application of the newly developed “nth-order feature adjoint sensitivity analysis methodology for response-coupled forward/adjoint linear systems” (abbreviated as “nth-FASAM-L”), which enables the most efficient computation of exactly obtained mathematical expressions of arbitrarily high-order (nth-order) sensitivities of a generic system response with respect to all of the parameters (including boundary and initial conditions) underlying the respective forward/adjoint systems. The nth-FASAM-L has been developed to treat responses of linear systems that simultaneously depend on both the forward and adjoint state functions. Such systems cannot be considered particular cases of nonlinear systems, as illustrated in this work by analyzing an analytically solvable model of the energy distribution of the “contributon flux” of neutrons in a mixture of materials. The unparalleled efficiency and accuracy of the nth-FASAM-L stem from the maximal reduction in the number of adjoint computations (which are “large-scale” computations) for determining the exact expressions of arbitrarily high-order sensitivities since the number of large-scale computations when applying the nth-FASAM-N is proportional to the number of model features as opposed to the number of model parameters (which are considerably more than the number of features). Hence, the higher the order of computed sensitivities, the more efficient the nth-FASAM-N becomes compared to any other methodology. Furthermore, as illustrated in this work, the probability of encountering identically vanishing sensitivities is much higher when using the nth-FASAM-L than other methods.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3