Prediction of the whole society electricity consumption in northeast China based on the BP neural network and Markov

Author:

Yan Yongbing,Shao Yan,Wang Dong,Yang Zhe,Ma Haibo,Li Qingjun,Li Peiyi

Abstract

Northeast China has been facing a severe power shortage situation. Since September 2021, “power rationing” events occurring in many places in the three provinces of northeast China have been causing inconvenience to people’s production and life. Therefore, it is particularly important to accurately predict the power load combined with the influencing factors of local power consumption. At the same time, the northeast region is about to enter the heating season, and the pressure on coal and electricity will further increase. In Heilongjiang Province, due to coal capacity control, limited production led to the high price of thermal coal; wind power photovoltaic output fluctuations, the epidemic, and other reasons also resulted in a large gap in the power supply side. Improving the power demand forecasting ability is of great significance to strengthen the reliability of people’s daily electricity consumption, rational distribution of power generation plans, and deployment of power grid resources. In order to improve the accuracy of electricity consumption prediction in Heilongjiang Province, Markov error correction is carried out on the basis of the backpropagation (BP) neural network prediction model so that the final prediction results have the advantages of the BP neural network prediction model and Markov model. In addition, it is more suitable for the prediction of random series data with high volatility, the prediction accuracy can be improved significantly, and the overall trend of electricity consumption can be predicted more accurately.

Publisher

Frontiers Media SA

Reference30 articles.

1. Short-term prediction of household electricity consumption: assessing weather sensitivity in a Mediterranean area;Beccali;Renew. Sustain. Energy Rev.,2011

2. Short-term electric load forecasting in Summer based on ARIMAX Model;Cui;Prot. Control Electr. Power Syst.,2015

3. Estimating residential demand for electricity in the United States1965-2006;Dergiades;Energy Econ.,2008

4. Prediction method of storage system performance based on improved artificial neural network;Guo;Comput. Sci.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3