Reduced order modeling of non-linear monopile dynamics via an AE-LSTM scheme

Author:

Simpson Thomas,Dervilis Nikolaos,Couturier Philippe,Maljaars Nico,Chatzi Eleni

Abstract

Non-linear analysis is of increasing importance in wind energy engineering as a result of their exposure in extreme conditions and the ever-increasing size and slenderness of wind turbines. Whilst modern computing capabilities facilitate execution of complex analyses, certain applications which require multiple or real-time analyses remain a challenge, motivating adoption of accelerated computing schemes, such as reduced order modelling (ROM) methods. Soil structure interaction (SSI) simulations fall in this class of problems, with the non-linear restoring force significantly affecting the dynamic behaviour of the turbine. In this work, we propose a ROM approach to the SSI problem using a recently developed ROM methodology. We exploit a data-driven non-linear ROM methodology coupling an autoencoder with long short-term memory (LSTM) neural networks. The ROM is trained to emulate a steel monopile foundation constrained by non-linear soil and subject to forces and moments at the top of the foundation, which represent the equivalent loading of an operating turbine under wind and wave forcing. The ROM well approximates the time domain and frequency domain response of the Full Order Model (FOM) over a range of different wind and wave loading regimes, whilst reducing the computational toll by a factor of 300. We further propose an error metric for capturing isolated failure instances of the ROM.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference81 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3