Establishing the energy consumption prediction model of aluminum electrolysis process by genetically optimizing wavelet neural network

Author:

Yao Lizhong,Fan Qian,Zhao Lei,Li Yanyan,Mei Qingping

Abstract

Nowadays, it is very popular to employ genetic algorithm (GA) and its improved strategies to optimize neural networks (i.e., WNN) to solve the modeling problems of aluminum electrolysis manufacturing system (AEMS). However, the traditional GA only focuses on restraining the infinite growth of the optimal species without reducing the similarity among the remaining excellent individuals when using the exclusion operator. Additionally, when performing arithmetic crossover or Cauchy mutation, a functional operator that conforms to the law of evolution is not constructed to generate proportional coefficients, which seriously restricted the exploitation of the hidden potential in genetic algorithms. To solve the above problems, this paper adopts three new methods to explore the performance enhancement of genetic algorithms (EGA). First, the mean Hamming distance (H-Mean) metric is designed to measure the spatial dispersion of individuals to alleviate selection pressure. Second, arithmetic crossover with transformation of the sigmoid-based function is developed to dynamically adjust the exchange proportion of offspring. Third, an adaptive scale coefficient is introduced into the Gauss-Cauchy mutation, which can regulate the mutation step size in real time and search accuracy for individuals in the population. Finally, the EGA solver is employed to deeply mine the optimal initial parameters of wavelet neural network (EGAWNN). Moreover, the paper provides the algorithm performance test, convergence analysis and significance test. The experimental results reveal that the EGAWNN model outperforms other relevant wavelet-based forecasting models, where the RMSE in test sets based on EGAWNN is 305.72 smaller than other seven algorithms.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3