Effects of the upward-increasing gradient magnetic field on soot properties in ethylene inverse diffusion flames with different oxygen concentrations

Author:

Ying Yaoyao,Duan Jiaqi,Liu Dong

Abstract

The effects of the upward-increasing gradient magnetic field on soot properties are experimentally investigated in ethylene inverse diffusion flames with different oxygen concentrations. The soot morphology, nanostructure, graphitization degree, and oxidation reactivity are obtained by high-resolution transmission electron spectroscopy (HRTEM), X-ray diffractometer (XRD), and thermogravimetric analyzer (TGA), respectively. The upward-increasing gradient magnetic field is induced by two Nd-Fe-B permanent magnets with different thicknesses. The results show that the magnetic field influences the soot properties mainly by affecting the distributions of paramagnetic O2 and OH radicals in the flames. The soot samples are more graphitized in the flame with higher O2 concentration, which contains a longer fringe length and smaller fringe tortuosity. Fullerene-like structures are more apparent with increasing oxygen content. The soot fringe length decreases and fringe tortuosity increases when the upward-increasing gradient magnetic field is applied. The application of the magnetic field enhances the soot oxidation reactivity, and it shows the greatest effect on the oxidation reactivity of soot produced in the flame with 21% O2 content.

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3