Short-term wind power prediction based on anomalous data cleaning and optimized LSTM network

Author:

Xu Wu,Shen Zhifang,Fan Xinhao,Liu Yang

Abstract

Wind power prediction values are often unstable. The purpose of this study is to provide theoretical support for large-scale grid integration of power systems by analyzing units from three different regions in China and using neural networks to improve power prediction accuracy. The variables that have the greatest impact on power are screened out using the Pearson correlation coefficient. Optimize LSTM with Lion Swarm Algorithm (LSO) and add GCT attention module for optimization. Short-term predictions of actual power are made for Gansu (Northwest China), Hebei (Central Plains), and Zhejiang (Coastal China). The results show that the mean absolute percentage error (MAPE) of the nine units ranges from 9.156% to 16.38% and the root mean square error (RMSE) ranges from 1.028 to 1.546 MW for power prediction for the next 12 h. The MAPE of the units ranges from 11.36% to 18.58% and the RMSE ranges from 2.065 to 2.538 MW for the next 24 h. Furthermore, the LSTM is optimized by adding the GCT attention module to optimize the LSTM. 2.538 MW. In addition, compared with the model before data cleaning, the 12 h prediction error MAPE and RMSE are improved by an average of 34.82% and 38.10%, respectively; and the 24 h prediction error values are improved by an average of 26.32% and 20.69%, which proves the necessity of data cleaning and the generalizability of the model. The subsequent research content was also identified.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference37 articles.

1. Wind resource assessment for decentralised power generation: case study of a complex hilly terrain in western himalayan region;Chandel;Sustain. Energy Technol. Assessments

2. Wind power potential assessment of 12 locations in western himalayan region of India;Chandel;Renew. Sustain. Energy Rev.

3. Overview of the development of offshore wind power generation in China;Chen,2022

4. An overview of the offshore wind energy potential for twelve significant geographical locations across the globe;Diaconita,2022

5. A short-term wind power prediction model based on CEEMD and WOA-KELM

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3