Research on CNN-LSTM DC power system fault diagnosis and differential protection strategy based on reinforcement learning

Author:

Yang Yun,Tu Feng,Huang Shixuan,Tu Yuehai,Liu Ti

Abstract

Introduction: With the development of artificial intelligence technology, more and more fields are applying deep learning and reinforcement learning techniques to solve practical problems. In the power system, both the direct current (DC) power system and the power grid substation are important components, and their reliability and stability are crucial for production efficiency and safety. The power grid substation is used to convert power from high-voltage transmission lines to low-voltage transmission lines, or from alternating current to direct current (or vice versa), in order to efficiently transmit and distribute power in the power system. However, diagnosing faults and designing cascaded protection strategies has always been a challenge due to the complexityand uncertainty of the DC power system.Methods: To improve the reliability and stability of the DC power system and power grid substation, this paper aims to develop an intelligent fault diagnosis system and cascaded protection strategy to reduce faults and downtime, lower maintenance costs, and increase production efficiency. We propose a method based on reinforcement learning and a convolutional neural network-long short-term memory (CNN-LSTM) model for fault diagnosis and cascaded protection strategy design in the DC power system. CNN is used to extract features from raw data, while LSTM models time-series data. In addition, we use reinforcement learning to design cascaded protection strategies to protect the power system from the impact of faults.Results: We tested our method using real 220V DC power system data in experiments. The results show that our method can effectively diagnose faults in the DC power system and formulate effective cascaded protection strategies.Discussion: Compared with traditional methods, this intelligent method can diagnose faults faster and more accurately, and formulate better cascaded protection strategies. This method helps reduce maintenance costs, increase production efficiency, and can be applied to other fields.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ứng Dụng Mạng Neural Sâu Chẩn Đoán Ổn Định Động Hệ Thống Điện;Journal of Technical Education Science;2024-08-28

2. Fault Detection in Machine Bearings Using Deep Learning;SAE Technical Paper Series;2024-06-01

3. A Study on Deep Learning Frameworks to Understand the Real Time Fault Detection and Diagnosis in IT Operations with AIOPs;2023 International Conference on Evolutionary Algorithms and Soft Computing Techniques (EASCT);2023-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3