A dual-head output network attack detection and classification approach for multi-energy systems

Author:

Li Tong,Zhang Xiaoyu,Zhao Hai,Xu Jiachen,Chang Yiming,Yang Shujun

Abstract

In today’s digital age, multi-energy systems (MES) have become an indispensable part of the social infrastructure, providing people with diversified energy support such as electricity, gas, water and so on. However, with the increasing popularity and networking of MES, the network security threats they face are becoming more and more serious, especially the threat of network attacks. This makes it essential to detect attacks on MES and precisely classify attack types in order to establish effective defense strategies. In this paper, a Dual-Head output network attack detection and classification method based on parallel CNN-BiLSTM network is proposed. The method adopts a parallel structure and can process different aspects of information at the same time, speeding up the training and inference process of the whole network, making the system respond more quickly to potential network attacks, and improving real-time and efficiency. The multi-model fusion structure can give full play to the advantages of CNN and BiLSTM in processing different types of data, so that the system can capture attack characteristics more comprehensively in many aspects, and improve the overall detection and classification performance. The dual-head output not only improves the system’s ability to accurately detect attacks, but also can effectively classify different types of attacks in detail, which helps to formulate more targeted defense strategies. In addition, in order to effectively evaluate our proposed method, the network traffic data required for the experiment were collected in an environment very similar to the actual operating environment of a multi-energy system. Finally, the experiment verifies that our method can not only realize effective detection of network attacks, but also accurately classify different types of attacks.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3