Empirical model for fitting the viscosity of lithium bromide solution with CuO nanoparticles and E414

Author:

Li Jiheng,Wang Gang,Li Jitong,Li Xiao,Liu Yuexi,Zhang Qunli

Abstract

To research viscosity fitting model of stable nano-lithium bromide solution (nano-LiBr), the stability of the nano-LiBr and the dynamic viscosity of LiBr were measued by Ultraviolet-visible spectroscopy (UV-vis) and rotational viscometer respectively. Two LiBr with different additives were measured, i.e., LiBr with dispersant (E414) and LiBr with dispersant + copper oxide nanoparticles (CuO). The ranges of measuring temperature were from 25°C–60°C, the concentrations of LiBr were from 50%–59%, the volume fractions of the dispersants were from 0%–4%, and the fractions of nanoparticle volume were from 0%–0.05%. Results indicated that the nano-LiBr with E414 had good stability. The viscosity of the LiBr decreased when temperature increased, and increased when LiBr concentration and dispersant amount were increased. It is also found that the viscosity was directly proportional to the volume fraction of the nanoparticles. This study also showed that the higher the concentration of the base fluid was, the more significant increase of the viscosity was. An empirical viscosity model of stable nano-LiBr with a maximum error of 13% was developed.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3