Identification of composite power quality disturbances based on relative position matrix

Author:

Liu Zijun,Zhang Huaying,Lv Zhining,Jia Honglei,Liang Xiaorui,Wang Qing

Abstract

With the integration of large-scale nonlinear loads and distributed power sources into the grid, composite power quality disturbances (PQDs) events are becoming increasingly common, which significantly degrade the quality of power supply. Therefore, this paper focuses on studying the accurate classification of composite PQDs to mitigate the risk of power quality deterioration. However, traditional classification methods perform barely satisfactory in terms of accuracy and robustness in the classification of PQDs. To address these issues, this paper proposes a method for recognizing composite PQDs based on relative position matrix (RPM). Initially, utilizing the RPM method, the initial one-dimensional PQD time series data is transformed into two-dimensional image data while preserving its high-frequency characteristics. This process results in the creation of an informative and feature-rich image training set. Subsequently, an end-to-end framework for PQDs classification was developed. The framework utilizes convolutional neural networks to automatically extract multi-scale spatial and temporal features from image data. This design aims to automate the classification of composite PQDs, eliminating the need for labor-intensive manual signal processing and feature extraction. This integration ensures a more accurate and robust classification. Finally, the proposed method is tested on a case involving 30 types of PQDs at varying noise levels and compared with existing power quality disturbance classification methods, and results show that the proposed method has better performance than the previously established methods.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3