Comprehensive assessment of building energy consumption in hot summer and cold winter areas based on carbon tax considerations

Author:

Xie Jing,Miao Xinyue,Dewancker Bart Julien,Xu Tongyu,Zhao Xueyuan,Shi Chunyan,Wei Xindong

Abstract

With the rapid development of economy and urbanization in China, cities are expanding rapidly and more constructions are being built, then lead to the fast-growing part in urban residential energy consumption. In China’s hot summer and cold winter regions, many buildings are not centrally heated and commonly rely on electrical equipment such as air conditioners which are all energy-inefficient thermoregulation devices. In order to analyze the relationship between building energy consumption and the energy efficiency ratio (EER) of air conditioning and the area of photovoltaic (PV) on the roof, the influence of the building envelope on building energy consumption in hot summer and cold winter regions in China is clarified. This paper uses energy plus software to analyze the impact of different EER and PV area on building energy consumption using a typical case study of a public health upgrading project in the eastern part of the Wuxing district, Huzhou, Zhejiang province in China. The simulation results show that the factor that has a greater impact on the energy consumption of the health center in summer is the PV area parameter of the building compared to the performance parameters of the air conditioning equipment. The PV area parameter settings and air conditioning equipment performance adjustments are dependent on the actual situation and the comprehensive energy saving rate of the outpatient building for public health in the eastern part of Tai Wu Xing District can exceed 50%. Finally, an economic analysis of the carbon tax and input costs is carried out, and the best combination is of which 60% of the area covered by Longi Green PV panels and an air conditioning efficiency ratio of 4.87. The research result combines renewable energy and efficient equipment to achieve dual optimization of environmental and economic aspects of building energy consumption, while providing reference opinions on the comprehensive evaluation method of building energy consumption from the perspective of carbon tax.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3