Research on detection of transmission line corridor external force object containing random feature targets

Author:

Zou Hongbo,Ye Ziyong,Sun Jialun,Chen Junting,Yang Qinhe,Chai Yanhui

Abstract

With the objective of achieving “double carbon,” the power grid is placing greater importance on the security of transmission lines. The transmission line corridor has complex situations with external force targets and irregularly featured objects including smoke. For this reason, in this paper, the high-performance YOLOX-S model is selected for transmission line corridor external force object detection and improved to enhance model multi-object detection capability and irregular feature extraction capability. Firstly, to enhance the perception capability of external force objects in complex environment, we improve the feature output capability by adding the global context block after the output of the backbone. Then, we integrate convolutional block attention module into the feature fusion operation to enhance the recognition of objects with random features, among the external force targets by incorporating attention mechanism. Finally, we utilize EIoU to enhance the accuracy of object detection boxes, enabling the successful detection of external force targets in transmission line corridors. Through training and validating the model with the established external force dataset, the improved model demonstrates the capability to successfully detect external force objects and achieves favorable results in multi-class target detection. While there is improvement in the detection capability of external force objects with random features, the results indicate the need to enhance smoke recognition, particularly in further distinguishing targets between smoke and fog.

Publisher

Frontiers Media SA

Reference33 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3