Implementation of radial basis function network-based maximum power point tracking for a PV-fed high step-up converter

Author:

Bharathidasan Mohan,Indragandhi Vairavasundaram

Abstract

This research offers a maximum power point tracking (MPPT) algorithm for photovoltaic (PV) systems based on neural networks (NNs) and a rapid step-up converter configuration. An improved variable step size-radial basis function network (RBFN) in the NN algorithm is accomplished in the proposed system to track the maximum power point (MPP) with high convergence speed and obtain maximum power with reduced oscillations. Under various irradiance and temperature conditions, the performance of the recommended algorithm was compared to that of particle swarm optimization (PSO), modified perturb and observe (P&O) MPPT technique, artificial neural network (ANN), and multilayer perceptron feed-forward (MPF) NN-based MPPT method. In this system, a new interleaved non-isolated large step-up converter with the coupled inductor technique is suggested to compensate for the discord in PV devices to enable a continuous and independent power flow. The proposed PV-fed converter system is validated under partial shading conditions (PSCs) and uniform solar PV, and the results are experimentally verified with the use of a programmable direct current (DC) source. The obtained results indicate that the proposed converter produces output with high gain, continuous input current, low voltage stress on switches, minimal ripple, high power density, and extensive input and output operations. Finally, a prototype has been implemented to verify the functionality of the presented converter in continuous conduction mode operation with an input voltage range of 20 V and an output voltage of 200 V.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference43 articles.

1. Design of a high step-up dc-dc power converter with voltage multiplier cells and reduced losses on semiconductors for photovoltaic systems;Alghaythi,2019

2. Residual incremental conductance based nonparametric mppt control for solar photovoltaic energy conversion system;Alsumiri;Ieee Access,2019

3. Transformerless high gain boost and buck-boost dc-dc converters based on extendable switched capacitor (sc) cell for stand-alone photovoltaic system;Amir;Sol. Energy,2018

4. Analysis and design of a softswitching boost dc/dc converter;Babaei;IET Power Electron.,2017

5. Review on non-isolated multi-input step-up converters for grid-independent hybrid electric vehicles;Bairabathina;Int. J. hydrogen energy,2020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3