A Novel Pricing Algorithm Based on Reward-Punishment Mechanism for Supply and Demand Balancing

Author:

Chen Xiaofei,Weng Liguo,Zhu Haiyan,Lian Deqiang

Abstract

Demand response (DR) is a powerful tool to maintain the stability of the power system and maximize the profit of the electricity market, where the customers engage in the pricing scheme and adjust their electricity demand proactively based on the price. In DR programs, most existing works are based on the assumption that the prediction of the electricity demand from customers is always accurate and trustworthy, which will lead to high cost and fluctuation of the electricity market once the prediction is obeyed. In this paper, we design a reward and punishment mechanism to constrain customers’ dishonest behaviors and propose a novel pricing algorithm based on the reward and punishment mechanism to relax the assumption, which guarantees the total electricity demands of all customers are within a secure range and obtain the maximum profit of the supplier. Meanwhile, we obtain the optimal demand and provide a upper and lower bound of the proposed price for the electricity market. In addition to a single type of customer, we also consider multiple types of customers, each of whom has different characteristics to prices. Extensive simulation results are constructed to demonstrate the effectiveness of the proposed algorithm compared with other pricing algorithms. It also shows that the average electricity consumption of a whole community is mostly affected by the residents’ electricity consumption and the balance of the supply and all types of customers is achieved under the proposed pricing algorithm.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference27 articles.

1. Demand Response in Electricity Markets: An Overview;Albadi;IEEE Power Eng. Soc. Gen. Meet.,2007

2. Time-of-use Pricing in Electricity Markets under Different Market Structures;Celebi;IEEE Trans. Power Syst.,2012

3. Energy Cost Optimization in Two-Machine Bernoulli Serial Lines under Time-Of-Use Pricing;Cheng,2019

4. Optimization of Tou Pricing for the Utility with the Consumers in the Manufacturing Sector;Cui;Proced. Manufacturing,2019

5. A Survey on Demand Response in Smart Grids: Mathematical Models and Approaches;Deng;IEEE Trans. Ind. Inform.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3