Knowledge reasoning in power grid infrastructure projects based on deep multi-view graph convolutional network

Author:

Hu Jie,Xu Gang,Qi Lizhong,Qie Xin

Abstract

With the rapid development of power grid infrastructure, especially the increasing number of ultra-high voltage (UHV) projects, knowledge extracted from historical engineering data is collected and can be potentially used to assist in the review of power transmission and transformation projects. However, conventional knowledge modeling and knowledge reasoning methods cannot meet the current needs of power grid construction. In this paper, considering the more supernumerary and distinctive information brought by multi-view data which could be beneficial for feature representation and knowledge reasoning from the constructed knowledge base, a multi-view graph convolutional network (GCN) based on knowledge graph is proposed to make classification for power grid infrastructure projects. Specifically, several views are constructed based on attribute information of a knowledge graph. In addition, a Haar convolution-based pooling mechanism is employed to capture the structural features represented by a chain of subgraphs. And then an aggregator that combines both attribute and structural information is used to classify UHV projects. Results from both UHV and NCI-1 datasets indicate that our proposed method is more has higher accuracy and generalization ability.

Publisher

Frontiers Media SA

Reference24 articles.

1. GridOnto: knowledge representation and extraction for fault events in power grid;Gao;IEEE Access,2023

2. Inductive representation learning on large graphs;Hamilton;Adv. neural Inf. Process. Syst.,2017

3. Research on intelligent review management platform for 110 kV and below power transmission and transformation project design;Huang;M. Electr. Tech.,2018

4. Bidirectional LSTM-CRF models for sequence tagging HuangZ. XuW. YuK. 2015

5. A survey on knowledge graphs: representation, acquisition, and applications;Ji;IEEE Trans. Neural Netw. Learn Syst.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning-Based Knowledge Graph Construction for Three-Dimensional Design Specification of Power Plant Engineering;Proceedings of the 2024 6th International Conference on Big Data Engineering;2024-07-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3