Deep learning health management diagnostics applied to the NIST smoke experiments

Author:

Hoppman Isaac,Alhadhrami Saeed,Wang Jun

Abstract

Fire is one of the most important hazards that must be considered in advanced nuclear power plant safety assessments. The Nuclear Regulatory Commission (NRC) has developed a large collection of experimental data and associated analyses related to the study of fire safety. In fact, computational fire models are based on quantitative comparisons to those experimental data. During the modeling process, it is important to develop diagnostic health management systems to check the equipment status in fire processes. For example, a fire sensor does not directly provide accurate and complex information that nuclear power plants (NPPs) require. With the assistance of the machine learning method, NPP operators can directly get information on local, ignition, fire material of an NPP fire, instead of temperature, smoke obscuration, gas concentration, and alarm signals. In order to improve the predictive capabilities, this work demonstrates how the deep learning classification method can be used as a diagnostic tool in a specific set of fire experiments. Through a single input from a sensor, the deep learning tool can predict the location and type of fire. This tool also has the capability to provide automatic signals to potential passive fire safety systems. In this work, test data are taken from a specific set of the National Institute of Standards and Technology (NIST) fire experiments in a residential home and analyzed by using the machine learning classification models. The networks chosen for comparison and evaluation are the dense neural networks, convolutional neural networks, long short-term memory networks, and decision trees. The dense neural network and long short-term memory network produce similar levels of accuracy, but the convolutional neural network produces the highest accuracy.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference37 articles.

1. Understanding of a convolutional neural network;Albawi,2017

2. Review of deep learning approaches for thyroid cancer diagnosis;Anari;Math. Problems Eng.,2022

3. Fire safety at nuclear sites: Challenges for the future–an international perspective;Beilmann,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3