Research on Variable Weight Synthesizing Model for Transformer Condition Assessment

Author:

Zhang Yan,Tang Yufeng,Liu Yongqiang,Liang Zhaowen

Abstract

Transformer is one of the important equipment in the power grid, which helps to integrate renewable energy into the transmission and distribution network efficiently. The safe and stable operation of transformer is of great importance for the reliable transmission of electricity generated from renewable energy and for the reliable use of electricity by the end users. Therefore, it is important to assess the condition to avoid the faults of the transformer. In this paper, a variable weight synthesizing assessment model is presented that combines the G1 method, the entropy weight method, and a variable-weight method proposed in this paper to assess the condition of transformer based on the offset of the transformer equivalent circuit parameters. First, we propose deterioration indexes oriented to the maintenance management needs, which can well reflect the degree of deterioration of each transformer component. Second, the various defects of the transformer are used as the assessment indexes, and the initial weight is given to the assessment indexes according to the damage degree of the defect. The initial weight is calculated comprehensively by the G1 method and the entropy weight method. Then, each index is scored according to the offset of the equivalent circuit parameters, and the weights are adjusted appropriately according to the scores of the indicators using a variable weighting method to emphasize the severity of the defect or the “sub-health” condition of the transformer. Finally, the respective scores and combined weights of the assessment indexes are weighted to obtain a comprehensive score. The simulation shows that the model is more sensitive to abnormal and “subhealth” conditions of the transformer, which verifies the feasibility of the variable weight synthesizing model to assess the condtion of the transformer.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference32 articles.

1. Root Cause Analysis Improved with Machine Learning for Failure Analysis in Power Transformers;Arias Velásquez;Eng. Fail. Anal.,2020

2. Hierarchical Assessment Method of Transformer Condition Based on Weight-Varying Grey Cloud Model;Du;Trans. China Electrotech. Soc.,2020

3. Parameter Identification for Two-Windings Power Transformers;Ecaterina,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3