Chiller Fault Diagnosis Based on Automatic Machine Learning

Author:

Tian Chongyi,Wang Youyin,Ma Xin,Chen Zhuolun,Xue Huiyu

Abstract

Intelligent diagnosis is an important means of ensuring the safe and stable operation of chillers driven by big data. To address the problems of input feature redundancy in intelligent diagnosis and reliance on human intervention in the selection of model parameters, a chiller fault diagnosis method was developed in this study based on automatic machine learning. Firstly, the improved max-relevance and min-redundancy algorithm was used to extract important feature information effectively and automatically from the training data. Then, the long short-term memory (LSTM) model was used to mine the temporal correlation between data, and the genetic algorithm was employed to train and optimize the model to obtain the optimal neural network architecture and hyperparameter configuration. Finally, a transient co-simulation platform for building chillers based on MATLAB as well as the Engineering Equation Solver was built, and the effectiveness of the proposed method was verified using a dynamic simulation dataset. The experimental results showed that, compared with traditional machine learning methods such as the recurrent neural network, back propagation neural network, and support vector machine methods, the proposed automatic machine learning algorithm based on LSTM provides significant performance improvement in cases of low fault severity and complex faults, verifying the effectiveness and superiority of this method.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3