A two-stage deep learning framework for early-stage lifetime prediction for lithium-ion batteries with consideration of features from multiple cycles

Author:

Yao Jiwei,Powell Kody,Gao Tao

Abstract

Lithium-ion batteries are a crucial element in the electrification and adoption of renewable energy. Accurately predicting the lifetime of batteries with early-stage data is critical to facilitating battery research, production, and deployment. But this problem remains challenging because batteries are complex, nonlinear systems, and data acquired at the early-stage exhibit a weak correlation with battery lifetime. In this paper, instead of building features from specific cycles, we extract features from multiple cycles to form a time series dataset. Then the time series data is compressed with a GRU-based autoencoder to reduce feature dimensionality and eliminate the time domain. Further, different regression models are trained and tested with a feature selection method. The elastic model provides a test RMSE of 187.99 cycles and a test MAPE of 10.14%. Compared with the state-of-art early-stage lifetime prediction model, the proposed framework can lower the test RMSE by 10.22% and reduce the test MAPE by 28.44%.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3