Author:
Liu Yu,Gao Tian,Sun Xiaolong,Yang Zexin,Zhang Yujia,Gao Shan,Huang Xueliang
Abstract
Large-scale distributed demand response is a hotspot in the development of power systems, which is of much significance in accelerating the consumption of new energy power generation and the process of clean energy substitution. However, the rigorous distributed algorithms utilized in current research studies are mostly very complicated for the large-scale demand response, requiring high quality of information systems. Considering the electrical features of power systems, a weak-consistency–oriented collaborative strategy is proposed for the practical implementation of the large-scale distributed demand response in this study. First, the basic conditions and objectives of demand response are explored from the view of system operators, and the challenges of large-scale demand response are discussed and furthermore modelled with a simplification based on the power system characteristics, including uncertainties and fluctuations. Then, a weakly consistent distributed strategy for demand response is proposed based on the Paxos distributed algorithm, where the information transmission is redesigned based on the electrical features to achieve better error tolerance. Using case studies with different information transmission error rates and other conditions, the proposed strategy is demonstrated to be an effective solution for the large-scale distributed demand response implementation, with a robust response capability under even remarkable transmission errors. By integrating the proposed strategy, the requirement for the large-scale distributed systems, especially the information systems, is highly eased, leading to the acceleration of the practical demand response implementation.
Subject
Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献