Research on Energy Management of a Virtual Power Plant Based on the Improved Cooperative Particle Swarm Optimization Algorithm

Author:

Yu Dongmin,Zhao Xuejiao,Wang Yong,Jiang Linru,Liu Huanan

Abstract

Energy management of virtual power plants (VPPs) directly affects operators’ operating profits and is also related to users’ comfort and economy. In order to provide a reasonable scheme for scheduling each unit of the VPP and to improve the operating profits of the VPP, this study focuses on the optimization of VPP energy management under the premise of ensuring the comfort of flexible load users. First, flexible loads are divided into time-shiftable load (TL), power-variable load (PL), and interruptible load (IL), and their accurate power consumption models are established, respectively. Then, aiming at maximizing the operation profits of a VPP operator, an optimization model of VPP energy management considering user comfort is proposed. Finally, the improved cooperative particle swarm optimization (ICPSO) algorithm is applied to solve the proposed VPP energy management optimization model, and the optimal scheduling scheme of VPP energy management is obtained. Taking a VPP in the coastal area of China as an example, results show that the optimization model proposed in this article has the advantages of good economy and higher user comfort. Meanwhile, the ICPSO algorithm has the characteristics of faster optimization speed and higher accuracy when solving the problem with multiple variables.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Peer-to-Peer Trading Mechanism of Virtual Power Plant Considering Contact Line Constraints;2023 IEEE 7th Conference on Energy Internet and Energy System Integration (EI2);2023-12-15

2. Virtual Power Plant for Optimizing Power Flow in Large Scale Distributed Networks;Electric Power Components and Systems;2023-12-11

3. Distributionally robust optimization for virtual power plant clusters considering carbon emission-based dynamic dispatch priority;Frontiers in Energy Research;2023-08-23

4. Chiller System Modeling using PSO Optimization based NARX approach;2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS);2023-05-12

5. A Multi-Subject Game-Based Operation Strategy for VPPs Integrating Wind-Solar-Storage;Sustainability;2023-04-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3