Techno-economic analysis of the transition toward the energy self-sufficiency community based on virtual power plant

Author:

Wang Yafei,Gao Weijun,Li You,Qian Fanyue,Yao Wanxiang

Abstract

Distributed energy resources are important measures to increase energy self-sufficiency and overcome the global carbon reduction problem. However, individual planned renewable energy generation poses a significant threat to the power grid. Therefore, virtual power plant (VPP) is attracting considerable attention as a means of aggregating distributed energy in urban areas. This study proposed a VPP model consisting of updating high-efficiency appliances and photovoltaic and energy storage systems. A comprehensive analysis for assessing the technical, economic, and environmental benefits derived from the VPP was presented, indicating the feasibility of a smart community to achieve power self-sufficiency with the support of the VPP. A smart community in Japan was selected as the research object, with a peak power demand of 57,350 kW. The VPP’s load leveling performance, return on investment (ROI), and CO2 emission reduction were analyzed. In addition, external factors, such as electricity price changes and FiT policies, are considered to assess the impact on the economics of the VPP. The results show that the introduction of the VPP system in the community can effectively stabilize the grid load with a peak shaving rate reaching 42.55% and improve the energy self-sufficiency rate of the region reached 100%, besides providing superior economic and environmental benefits (16.26% CO2 emission reduction) on the demand side. Furthermore, the economic performance of VPP shows a good prospect with the fall in equipment prices and the future trend of carbon tax growth. This study provides important insights into the development of VPP in other countries, especially for low-energy self-sufficiency regions.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3