Optimization of photovoltaic panel deployment in centralized photovoltaic power plant under multiple factors

Author:

Fan Rongquan,Ming Ziqiang,Xu Weiting,Li Ting,Han Yuqi,Ma Ruiguang,Liu Jichun,Wu Yiyang

Abstract

Solar energy is one of the main renewable energy sources and has rapidly developed in many countries. However, the photovoltaic (PV) output power will be different under various meteorological and geographical conditions. Therefore, this paper presents an optimization method for the deployment of PV panels in a centralized PV power plant considering multiple factors. Firstly, the whole planning area is divided into a certain amount of sub-areas according to a given area, and fuzzy C-means algorithm is used for terrain clustering according to the geographical characteristics of the sub-areas. Secondly, the correlation analysis between each meteorological factor and PV output power is carried out separately to select the main factors affecting PV output power, and then the expected annual PV output power under the joint action of several main meteorological factors in each terrain is calculated by dual-stage attention mechanism based long short-term memory algorithm. Finally, according to the expected annual PV output of each terrain, considering the constraints including cost, area and so on, the deployment optimization of PV panels is obtained to maximize the annual PV output of the whole PV power plant and minimize the construction cost. The results of case studies show that the proposed methods effectively improve the expected PV output power of the PV power plant and reduce the construction cost.

Funder

State Grid Sichuan Economic Research Institute, State Grid Corporation of China

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3