Author:
Dai Jiejie,Xie Jing,Huang Chuan,Wu Bin,Li Hantang,Ma Yuan,Li Shilong
Abstract
Non-intrusive load monitoring (NILM) is one of the important technologies in home energy management and power demand response scenario. However, the presence of multi-mode appliances and appliances with close power values have affected in diminishing the accuracy of identification based NILM algorithms. To tackle these challenges, the work proposes a resident load decomposition method combining multi-scale attention mechanism and convolutional neural network. At the first stage, the attention scores of the normal load data at the previous few moments of the attention model are smoothed dynamically against the abnormal scores at the current moment. The load identification attention model is optimized by constraint factors. Then, on this basis, convolution filters of different sizes are used to model the mixed load data of different electrical equipment, to mine more abundant characteristic information. Finally, to illustrate the proposed processes and validate its effectiveness, taking the PLAID data set as an example, the method proposed in the article is compared with respect to the existing NILM techniques. The experimental results show that the method based on the multi-scale attention mechanism in this paper can greatly improve the effect of load decomposition. Moreover, it reduces the confusion problem of electrical appliance identification with similar load characteristics.
Subject
Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献