Fuel performance uncertainty quantification and sensitivity analysis in the presence of epistemic and aleatoric sources of uncertainties

Author:

Faure Quentin,Delipei Gregory,Petruzzi Alessandro,Avramova Maria,Ivanov Kostadin

Abstract

Fuel performance modeling and simulation includes many uncertain parameters from models to boundary conditions, manufacturing parameters and material properties. These parameters exhibit large uncertainties and can have an epistemic or aleatoric nature, something that renders fuel performance code-to-code and code-to-measurements comparisons for complex phenomena such as the pellet cladding mechanical interaction (PCMI) very challenging. Additionally, PCMI and other complex phenomena found in fuel performance modeling and simulation induce strong discontinuities and non-linearities that can render difficult to extract meaningful conclusions form uncertainty quantification (UQ) and sensitivity analysis (SA) studies. In this work, we develop and apply a consistent treatment of epistemic and aleatoric uncertainties for both UQ and SA in fuel performance calculations and use historical benchmark-quality measurement data to demonstrate it. More specifically, the developed methodology is applied to the OECD/NEA Multi-physics Pellet Cladding Mechanical Interaction Validation benchmark. A cold ramp test leading to PCMI is modeled. Two measured quantities of interest are considered: the cladding axial elongation during the irradiations and the cladding outer diameter after the cold ramp. The fuel performance code used to perform the simulation is FAST. The developed methodology involves various steps including a Morris screening to decrease the number of uncertain inputs, a nested loop approach for propagating the epistemic and aleatoric sources of uncertainties, and a global SA using Sobol indices. The obtained results indicate that the fuel and cladding thermal conductivities as well as the cladding outer diameter uncertainties are the three inputs having the largest impact on the measured quantities. More importantly, it was found that the epistemic uncertainties can have a significant impact on the measured quantities and can affect the outcome of the global sensitivity analysis.

Funder

Nuclear Energy University Program

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference33 articles.

1. Importance of uncertainty quantification in nuclear fuel behaviour modelling and simulation;Bouloré;Nucl. Eng. Des.,2019

2. Uncertainty and sensitivity analysis of the nuclear fuel thermal behavior;Bouloré;Nucl. Eng. Des.,2012

3. Consortium for advanced simulation of light water reactors, CASL phase II summary report2020

4. Polynomial Chaos expansion for sensitivity analysis;Cresaux;Reliab. Eng. Syst. Saf.,2009

5. Multi-physics pellet cladding mechanical interaction validation input and output specifications;De Luca;Nucl. Industrial Eng.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3