Sparse Dictionary Learning for Transient Stability Assessment

Author:

Wang Qilin,Pang Chengzong,Qian Cheng

Abstract

Transient stability assessment (TSA) has always been a fundamental and challenging problem for ensuring the security and operation of power systems. With more power electronic interface resources integrated into the grid and large renewable energies, the stability of the power system is jeopardized. Therefore, TSA of the power system should be considered in advance to keep the system running stable. In recent years, with the development of artificial intelligence (AI) technologies such as artificial neural network (ANN), support vector machine (SVM), and Markov decision process, TSA has improved dramatically. In this study, a sparse dictionary learning approach is proposed to improve the precision of the classification accuracy of transient stability assessment in power systems. Case studies of TSA using multi-layer support vector machine (ML-SVM) and long short-term memory network–based recurrent neural network (LSTM-RNN) are discussed as benchmarks to validate the proposed method. The stable and unstable dictionary learnings are designed based on datasets obtained by simulating thousands of different time-domain simulation (TDS) scenarios performed on the New-England 39-bus system in the PSAT (power system analysis toolbox) toolbox. Stable and unstable dictionaries are developed based on the K-SVD approach. The testing dataset contains both stable and unstable samples which steps into the sparse coding process to obtain the indexes. Compared with the indexes, the system’s final TSA is targeted. The proposed method exhibits satisfactory classification accuracy in transient stability prediction and provides the ability to reduce false alarms both in positives and negatives of the power system.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3