Large-scale power inspection: A deep reinforcement learning approach

Author:

Guan Qingshu,Zhang Xiangquan,Xie Minghui,Nie Jianglong,Cao Hui,Chen Zhao,He Zhouqiang

Abstract

Power inspection plays an important role in ensuring the normal operation of the power grid. However, inspection of transmission lines in an unoccupied area is time-consuming and labor-intensive. Recently, unmanned aerial vehicle (UAV) inspection has attracted remarkable attention in the space-ground collaborative smart grid, where UAVs are able to provide full converge of patrol points on transmission lines without the limitation of communication and manpower. Nevertheless, how to schedule UAVs to traverse numerous, dispersed target nodes in a vast area with the least cost (e.g., time consumption and total distance) has rarely been studied. In this paper, we focus on this challenging and practical issue which can be considered as a family of vehicle routing problems (VRPs) with regard to different constraints, and propose a Diverse Trajectory-driven Deep Reinforcement Learning (DT-DRL) approach with encoder-decoder scheme to tackle it. First, we bring in a threshold unit in our encoder for better state representation. Secondly, we realize that the already visited nodes have no impact on future decisions, and then devise a dynamic-aware context embedding which removes irrelevant nodes to trace the current graph. Finally, we introduce multiply decoders with identical structure but unshared parameters, and design a Kullback-Leibler divergence based regular term to enforce decoders to output diverse trajectories, which expands the search space and enhances the routing performance. Comprehensive experiments on five types of routing problems show that our approach consistently outperforms both DRL and heuristic methods by a clear margin.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Survey on Image-Oriented Transmission Line Inspection via UAV;2023 International Conference on Computer Science and Automation Technology (CSAT);2023-10-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3