An eco-technoeconomic analysis of hydrogen production using solid oxide electrolysis cells that accounts for long-term degradation

Author:

Naeini Mina,Cotton James S.,Adams Thomas A.

Abstract

This paper presents an eco-technoeconomic analysis (eTEA) of hydrogen production via solid oxide electrolysis cells (SOECs) aimed at identifying the economically optimal size and operating trajectories for these cells. Notably, degradation effects were accounted by employing a data-driven degradation-based model previously developed by our group for the analysis of SOECs. This model enabled the identification of the optimal trajectories under which SOECs can be economically operated over extended periods of time, with reduced degradation rate. The findings indicated that the levelized cost of hydrogen (LCOH) produced by SOECs (ranging from 2.78 to 11.67 $/kg H2) is higher compared to gray hydrogen generated via steam methane reforming (SMR) (varying from 1.03 to 2.16 $ per kg H2), which is currently the dominant commercial process for large-scale hydrogen production. Additionally, SOECs generally had lower life cycle CO2 emissions per kilogram of produced hydrogen (from 1.62 to 3.6 kg CO2 per kg H2) compared to SMR (10.72–15.86 kg CO2 per kg H2). However, SOEC life cycle CO2 emissions are highly dependent on the CO2 emissions produced by its power source, as SOECs powered by high-CO2-emission sources can produce as much as 32.22 kg CO2 per kg H2. Finally, the findings of a sensitivity analysis indicated that the price of electricity has a greater influence on the LCOH than the capital cost.

Funder

Natural Sciences and Engineering Research Council of Canada

Ontario Centres of Excellence

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference46 articles.

1. agriculture-environment-and-natural-resources2022

2. Hydrogen as energy carrier: Techno-economic assessment of decentralized hydrogen production in Germany;Bhandari;Renew. Energy,2021

3. Régie de l’énergie du Canada2022

4. Electricity prices in Canada2021

5. canadas-renewable-power-landscape2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3