Comparing Alternative Jet Fuel Dependencies Between Combustors of Different Size and Mixing Approaches

Author:

Boehm Randall C.,Colborn Jennifer G.,Heyne Joshua S.

Abstract

Analyses used to reveal fuel dependencies on lean blow out and ignition at specific operating conditions in specific combustors show inconsistent trends with each other. Such variety is however consistent with the occurrence of transitions between the governing physical phenomena as the ratios between evaporation, mixing, or chemical time scales with their respective residence times also vary with specific operating conditions and combustor geometry. It is demonstrated here that the fuel dependencies on LBO in a large, single-cup, swirl-stabilized, rich-quench-lean combustor varies with operating conditions such that a feature importance match is attained to fuel dependencies observed in a much smaller combustor at one end of the tested range, while a qualitative match to fuel dependencies observed in a lean, premixed, swirler-stabilized combustor of comparable size at the other end of the tested range. The same reference combustor, when tested at cold conditions, is shown to exhibit similar fuel dependencies on ignition performance as the much smaller combustor, when tested at both cold and warm conditions. The practical significance of these findings is that a reference rig, such as the Referee Rig, can capture fuel performance trends of proprietary industry combustors by tailoring the inlet air and fuel temperatures of the tests. It is, therefore, a trustworthy surrogate for screening and evaluating sustainable aviation fuel candidates, reducing the dependency on proprietary industrial combustors for this purpose, thereby increasing transparency within the evaluation process while also expediting the process and reducing cost and fuel volume.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3