Direct Numerical Simulation of Heat Transfer of Lead–Bismuth Eutectic Flow Over a Circular Cylinder at Re = 500

Author:

Chen Li-Xia,Yuan Chao,Zhao Jun-Long,Zhang Hong-Na,Ma Yu,Li Feng-Chen

Abstract

The flow and heat transfer characteristics of the lead–bismuth eutectic (LBE) (Prandtl number Pr = 0.025) passing over a circular cylinder at Re = 500 are studied by direct numerical simulation and compared with the case of the air (Pr = 0.71). This article makes two major contributions: (1) heat transfer characteristics for the LBE flowing past a circular cylinder. For the case of air, the results show that a similarity exists among the wake structure of instantaneous temperature, fluctuating temperature, and velocity. However, these fields differ severely for the case of LBE. The local time-averaged Nusselt number (Nu¯) and circumferentially averaged Nu¯ are smaller in the LBE than that in the air. The circumferential and spanwise distributions of Nu¯ in the LBE show a greater uniformity. The regions with larger circumferential or spanwise inhomogeneity appear in the flow separation zone. Besides, a resemblance between the distribution of the root mean square of fluctuation temperature and the turbulence kinetic energy can be recognized in the air; however, the similarity disappears for the case of LBE and in which the temperature fluctuation is smaller than that in the air. (2) Study on the temperature and velocity defect laws in the wake. By introducing the defect scales, it is concluded that the velocity field has not entered the self-preserving state yet, while the self-preserving state starts at the location of five times the diameter of the cylinder downstream of the cylinder for the temperature in the LBE and that of 21 times for the temperature in the air. In summary, even if without taking the buoyancy force into consideration, this article provides a fruitful description of the flow and heat transfer characteristics when the LBE flows past a cylinder, which is a typical flow in a helical coil steam generator of lead–bismuth alloy-cooled fast reactors. These highly resolved data on velocity and temperature are valuable for turbulence and heat fluxes modeling in the future and may facilitate the in-depth understanding of such flow and heat transfer characteristics within a limited variation range of operating temperature.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3