A deep learning technique Alexnet to detect electricity theft in smart grids

Author:

Khan Nitasha,Amir Raza Muhammad,Ara Darakhshan,Mirsaeidi Sohrab,Ali Aamir,Abbas Ghulam,Shahid Muhammad,Touti Ezzeddine,Yousef Amr,Bouzguenda Mounir

Abstract

Electricity theft (ET), which endangers public safety, creates a problem with the regular operation of grid infrastructure and increases revenue losses. Numerous machine learning, deep learning, and mathematical-based algorithms are available to find ET. Still, these models do not produce the best results due to problems like the dimensionality curse, class imbalance, improper hyper-parameter tuning of machine learning and deep learning models, etc. We present a hybrid deep learning model for effectively detecting electricity thieves in smart grids while considering the abovementioned concerns. Pre-processing techniques are first employed to clean up the data from the smart meters. Then, the feature extraction technique, like AlexNet, addresses the curse of dimensionality. The effectiveness of the proposed method is evaluated through simulations using a real dataset of Chinese intelligent meters. To conduct a comparative analysis, various benchmark models are implemented as well. Our proposed model achieves accuracy, precision, recall, and F1, up to 86%, 89%, 86%, and 84%, respectively.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3