Online load-loss risk assessment based on stacking ensemble learning for power systems

Author:

Wang Yanwen,Sun Yanying,Dan Yangqing,Li Yalong,Cao Jiyuan,Han Xueqian

Abstract

Power systems faces significant uncertainty during operation owing to the increased integration of renewable energy into power grids and the expansion of the scale of power systems, these factors lead to higher load-loss risks; therefore, realization of a fast online load-loss risk assessment is crucial to ensuring the operational safety and reliability of power systems. This paper presents an online load-loss risk assessment method for power systems based on stacking ensemble learning. First, a traditional load-loss risk assessment method based on power flow analysis was constructed to generate risk samples. The label of the sample is load-loss risk assessment index and the features are multiple operational variables of the power system. And the recursive feature elimination using cross validation (RFECV) was adopted for feature selection. Second, four different machine learning models, including support vector regression (SVR), extremely randomized trees (ET), extreme gradient boosting (XGBoost) and elastic network (EN) were used to form a stacking ensemble learning model for sample training. Moreover, to further improve the model performance, the particle swarm optimization (PSO) algorithms was used for parameter optimization. Finally, based on this model, the online load-loss risk assessment of a power system was realized. The application of the proposed method on IEEE test systems demonstrated that the proposed method was more accurate than methods based on individual machine learning models, from which the stacking was designed, while still maintaining a significant advantage in terms of runtime compared to the traditional risk assessment method.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3