Experimental Study on the Interaction Between CO2 and Rock During CO2 Pre-pad Energized Fracturing Operation in Thin Interbedded Shale

Author:

Li Baiyang,Mou Jianye,Zhang Shicheng,Ma Xinfang,Zou Yushi,Wang Fei

Abstract

To investigate the impact of CO2 on rocks during the whole period of CO2 pre-pad energized fracturing operation for thin interbedded shale reservoir, including fracturing and well shut-in, a series of laboratory triaxial fracturing experiments and CO2 soaking experiments were conducted on thin interbedded shale (from Jimsar formations). In these experiments, combined with computed tomography (CT), the effect of fracturing fluid, horizontal principal stress difference, vertical principal stress, and natural fractures on fracture morphology were studied respectively. And based on X-ray diffraction (XRD) and scanning electron microscopy (SEM) experiments, the dissolution of minerals and the changes of pore structure before and after CO2 soaking were analyzed. The results of the fracturing experiment show that the bedding planes are easy to be opened by low viscosity of CO2 and the longitudinal fractures intersect with bedding planes to build a complex fracture network. During CO2 fracturing of thin interbedded shale, the horizontal principal stress difference is no longer a crucial factor to form a complex fracture network, but the vertical stress and natural fractures play important roles. And the soaking experiments indicate that the main dissolved mineral is carbonate whose dissolution ratio can reach 45.2% after soaking for 5 days, leading to the expansion of original pores or the exposure of new pores.

Funder

China National Petroleum Corporation

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3