Analysis of transient characteristics and design improvement of the passive residual heat removal system of NHR-200-II

Author:

Yiwa Geng,Xiongbin Liu,Ziyi Li,Shuliang Huang,Lanyu Zhou,Yanfang Xue,Xiaotian Li,Yajun Zhang

Abstract

NHR-200-II is a small integrated pressurized water reactor with 200 MW core thermal power. The core heat is transferred to two independent intermediate circuits via fourteen in-vessel primary heat exchangers (PHE), and the heat in the intermediate circuits is transferred to feedwater by two steam generators (SG) in the two intermediate circuits respectively. A passive residual heat removal (PRHR) branch is connected to each intermediate circuit to remove core decay heat under postulated accidents. During normal operation, PRHR branches are isolated by valves while SG branches in intermediate circuits are open. The valves in PRHR branches will be opened and the isolation valves of SG branches will be closed during decay heat removal scenarios. The decay heat removal capacity of NHR-200-II PRHRS could be seriously deteriorated once the isolation valves for SG branches fail to close, which was confirmed in a scaled integral test loop previously. Current understanding of PRHRS’s thermal-hydraulic characteristics with possible isolation failure in SG branches is limited. In this paper, the NHR-200-II PRHRS is modeled with RELAP5 considering the case of success and fail to isolate SG branches. A series of numerical simulations are carried out to study the impact of various parameters, such as the initial temperature, the size of the intermediate circuits’ header, and the initial flow direction in the intermediate circuits. Oscillatory flow is found when SG branches fail to be isolated under certain parameters combinations. An improved PRHRS design is purposed to eliminate possible flow oscillations, and the purposed improved design are tested by numerical simulations.

Publisher

Frontiers Media SA

Reference12 articles.

1. Stability characteristics of a single-phase free convection loop;Creveling;J. Fluid. Mech.,1975

2. Metastable regimes: a parametric study in reference to single-phase parallel channel natural circulation systems;Gartia,2006

3. Numerical simulation of the transient flow characteristics and thermal stratification phenomena in the passive residual heat removal system of NHR-200-II;Geng,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3