Author:
Yong Wei,Wei Zhi-jie,Liu Yu-yang,Wang De-qiang,Cui Yong-zheng
Abstract
Introduction: We perform molecular dynamics (MD) simulations of nanoscopic liquid water drops on a graphite substrate mimicking the carbon-rich pore surface in the presence of CH4/CO2 mixtures at temperatures in the range 300 K–473 K.Methods: The surface tension in MD simulation is calculated via virial expression, and the water droplet contact angle is obtained through a cylindric binning procedure.Results: Our results for the interfacial tension between water and methane as a function of pressure and for the interfacial tension between water and CH4/CO2 mixtures as a function of their composition agree well with the experimental and computational literature.Discussion: The modified Young’s equation has been proven to bridge the macroscopic contact angle and microscopic contact with the experimental literature. The water droplet on both the artificially textured surface and randomly generated surface exhibits a transition between the Wenzel and Cassie–Baxter states with increased roughness height, indicating that surface roughness enhances the hydrophobicity of the solid surface.
Subject
Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献