Industrial users load pattern extraction method based on multidimensional electrical consumption feature construction

Author:

Wang Li,Zhao Jian,Xia Xiangwu,Liu Jun,Lu Yang,Zhao Lei

Abstract

The rapid development of renewable energy generation aggravates the imbalance between supply and demand in power grid, and exploring the potential of demand side resource can effectively improve such problems. Industrial users (IU) is an important demand response resource of power grid, and mining the load patterns of IU is the basis of studying the demand response ability of IU, which plays an important role in the safe operation and lean management of power grid. Lately, the popularity of advanced metering infrastructures provides data support for studying the load patterns of IU. However, the high dimensionality and the complex non-linear relationship of IU’s load data bring difficulties to the task of clustering. To solve the above problems, this paper proposes a load pattern extraction method based on multidimensional electrical consumption feature construction. Firstly, industrial load characteristic set of IU is created with five load characteristic indexes weighted by improved entropy weight method. In addition, convolutional autoencoder is established to extract the temporal feature of industrial load data which is combined with industrial load characteristic set to build a multidimensional feature set (MFS) for IU and finish multidimensional electrical consumption feature construction (MECFC). Then, MFS is used as the input of Self-Organization Map network to select the initial clustering centers of K-means algorithm, overcoming the problem of local optimal solution, and complete the IU daily load clustering. The experiment shows that the algorithm based on MECFC solves the local optimal problem and have better performance in stability and clustering effect than traditional methods.

Funder

Shanghai Education Development Foundation

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3