A Double-Layer Optimization Maintenance Strategy for Photovoltaic Power Generation Systems Considering Component Correlation and Availability

Author:

Li Xubin,Chen Wei,Lei Huan,Pei Tingting,Pei Xiping

Abstract

Aiming at the problem that the maintenance method based on the status information of the photovoltaic power generation system cannot effectively reflect the influence of the comprehensive correlation of the components on the maintenance strategy, on the basis of optimizing maintenance cost and availability, a new double-layer optimization maintenance strategy for photovoltaic power generation systems based on component dependencies and availability is proposed. First, the comprehensive correlation of components in the system is analyzed, and the availability of the system and components is modeled by improving the Markov model. Then, the idea of opportunistic maintenance is introduced. The upper-level optimization model that aims at the lowest maintenance cost is established by considering the economic correlation. The highest availability of the system is taken as the objective function, and the limit of the availability of components is used as a constraint to establish a lower-level optimization model for verification. The influence of failure correlation on the maintenance strategy is verified by introducing failure-related strength. The example shows that when there is a fault correlation between components, the affected components need to spend more maintenance costs, and the maintenance strategy also changes. By introducing the weather accessibility to analyze its influence on the maintenance cost and the rate of change in the availability of the system, the results show that in the double-layer optimization maintenance model, the saving rate of maintenance cost and the reduction ratio of system availability under the condition of low weather accessibility are greater. Taking a photovoltaic power station in the west as an example, the results from comparing different maintenance plans show that the maintenance strategy proposed in this study can effectively reduce maintenance costs and downtime, while increasing system availability.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference24 articles.

1. Optimizing Maintenance Policies for a Yaw System Using Reliability Centered Maintenance and Data-Driven Condition Monitoring[J];Catelani;IEEE Trans. Instrumentation Meas.,2020

2. Economic Optimization of Maintenance against Soiling in Photovoltaic Plants;Colombi Gomes;IEEE Latin Am. Trans.,2020

3. Preventive Maintenance Strategy for Offshore Wind Turbines Considering Component Correlation[J];Fu;PowerSystem Tech.,2019

4. A Machine Learning Evaluation of Maintenance Records for Common Failure Modes in PV Inverters;Gunda;IEEE Access,2020

5. IEEE Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers;IEEE,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3