Parameter Identification of Electromechanical Oscillation Mode in Power Systems Driven by Data: A Quasi-Real-Time Method Based on Randomized-DMD-Multilayer Artificial Neural Networks

Author:

Cai Guowei,Guo Shujia,Liu Cheng

Abstract

With the increase in the power system scale, the identification of electromechanical oscillation mode parameters by traditional numerical methods can no longer meet the requirements of complete real-time analysis. Therefore, a method based on machine learning (multilayer artificial neural networks) is proposed to identify the electromechanical oscillation mode parameters of the power system. This method can take the monitorable variables of the WAMS as the input of the model and the key characteristic information such as frequency and damping ratio as the output. After processing the input and output data with randomized dynamic mode decomposition (randomized-DMD), their mapping relationship can be analyzed by using the multilayer neuron architecture. The simulation results of the 4-generator 2-area system and the IEEE 16-generator 5-area system show that this method can accurately calculate the key characteristic parameters of the system without considering the change in the control parameters and after the offline training of historical data, which shows higher accuracy, stronger robustness, and sensitive online tracking ability.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference34 articles.

1. Bootstrap-Based Confidence Interval Estimates for Electromechanical Modes from Multiple Output Analysis of Measured Ambient Data;Anderson;IEEE Trans. Power Syst.,2005

2. Improved Methodologies for the Calculation of Critical Eigenvalues in Small Signal Stability Analysis;Angelidis;IEEE Trans. Power Syst.,1996

3. Artificial Intelligence-Based Approach for Forced Oscillation Source Detection and Classification;Chan,2020

4. Synchronized Phasor Measurement Applications in Power Systems;De La Ree;IEEE Trans. Smart Grid,2010

5. A Recursive Maximum Likelihood Estimator for the Online Estimation of Electromechanical Modes with Error Bounds;Dosiek;IEEE Trans. Power Syst.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3