Mapping Highway Mobile Carbon Source Emissions Using Traffic Flow Big Data: A Case Study of Guangdong Province, China

Author:

Li Yuanjun,Wu Qitao,Zhang Yuling,Huang Guangqing,Jin Shuangquan,Fang Shun

Abstract

The continuously growing transportation sector has become the second largest, yet increasing, industrial emissions source of CO2, posing serious challenges to global environmental security. Among the various transport modes, road transportation yields the highest cumulative level of CO2 emissions. However, these emissions have not been sufficiently investigated in previous studies, especially with respect to analyses from the perspective of vehicle emission sources. This can make source management and emissions reduction difficult. To address these methodological issues, this study aims to build a highway traffic carbon emissions monitoring and spatial analysis system, employing the mobile carbon sources concept, and establish a carbon emissions model encompassing all types of passenger and freight vehicles based on interstation O-D traffic flow data recorded by the toll collection network, to calculate vehicle carbon emissions and create a mobile carbon source emissions map. Empirical analyses in Guangdong Province revealed that, compared with conventional studies, the mobile carbon source emission mapping approach can accurately identify vehicle types with higher emissions while assisting with source management. Of the average total daily carbon emissions from all types of vehicles that use highways (15,311 t), 57.10% originated from freight vehicles (8,743 t) while passenger vehicles contributed 42.90%. By specific vehicle type, emissions mainly originated from small and medium-sized vehicles, including Class I passenger vehicles (i.e., cars) and Class I and III freight vehicles. Further, the proposed method could locate road sections characterized by high carbon emissions. High-emission sections in Guangdong Province were mainly spatially autocorrelated, with peak aggregations on national highways; near economically developed and densely populated areas; and adjacent to surrounding airports, ports, and overpass roads. This study improves the scientific and spatial analytical accuracy for carbon emissions measurements of highway vehicles, thus informing source management and sustainable development, as well as providing technical support for attaining carbon neutrality in China.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3