A causal reasoning approach for power transformer failure diagnosis

Author:

Jiao Fei,Ma Zhenyuan,Chen Qikun,Zhang Fengda,Zhao Dezong

Abstract

Extensive research validates the effectiveness of employing Dissolved Gas Analysis (DGA) for diagnosing electric power transformer failures. However, a significant portion of existing research focuses on static data for classifying failure types, lacking a thorough exploration of causality. This study proposes an approach integrating causality and the DGA framework to infer power transformer failures. Validation through 96 historical samples from diverse transformers demonstrates the capability of this method to identify probable abnormal failures of the power transformer accurately. The proposed causal reasoning method is able to diagnose all common transformer states, accounting for the level of severity in both electrical and thermal failures, and with an accuracy of 95.8%.

Publisher

Frontiers Media SA

Reference34 articles.

1. Power transformer dissolved gas analysis through bayesian networks and hypothesis testing;Aizpurua;IEEE Trans. Dielectr. Electr. Insulation,2018

2. Conventional methods of dissolved gas analysis using oil-immersed power transformer for fault diagnosis: a review;Ali;Electr. Power Syst. Res.,2023

3. A review of dissolved gas analysis measurement and interpretation techniques;Bakar;IEEE Electr. Insul. Mag.,2014

4. Automated generation of robotic planning domains from observations;Diehl,2021

5. Why did i fail? a causal-based method to find explanations for robot failures;Diehl;IEEE Robotics Automation Lett.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3