Optimizing tight oil extraction from low permeability tight reservoirs: a study on stress sensitivity effects and applications in carbon capture, utilization, and storage

Author:

Jiang Xin,Yu Gaoming

Abstract

This paper takes into consideration the impact of stress sensitivity on bioenergy production from low permeability tight reservoirs, focusing on the post-fracturing phase. This paper established a trilinear flow model that effectively takes into account the dynamics of such reservoirs. This model incorporates stress sensitivity parameters and uses the perturbation transformation and Laplace transformation to solve the productivity prediction formula. The final productivity prediction curve post-fracturing is achieved through a numerical inversion method. This study shows that the stress sensitivity effect significantly diminishes the productivity of fractured horizontal wells used in bioenergy extraction. By introducing stress sensitivity effect parameters, this paper manages to uncover the influence law of mobility and artificial fracture parameters on productivity. Notably, as the reservoir mobility increases, the cumulative bioenergy production from fractured horizontal wells improves significantly. In addition to the above, this paper also scrutinizes the sensitivity of artificial fracture parameters and optimize both the quantity and length of these fractures. This plays a crucial role in enhancing the productivity and efficiency of bioenergy extraction from these tight reservoirs. The applicability and reliability of this method are extensively tested, thereby establishing its potential in guiding the development of low permeability reservoirs post-fracturing. Importantly, this research sets the groundwork for combining bioenergy production with Carbon Capture, Utilization, and Storage (CCUS) technologies. By focusing on optimization and stress management in tight reservoirs, this paper contributes to the sustainable production of bioenergy and reduce carbon emissions, moving a step closer to a cleaner and sustainable future.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3