Edge–end collaborative secure and rapid response method for multi-flow aggregated energy dispatch service in a distribution grid

Author:

Shi Zhan

Abstract

With a high proportion of distributed source–grid–load–storage resources penetrating into the distribution network, multi-flow aggregated energy dispatch is essential to enhance renewable energy consumption capacity and maintain grid stability. However, intelligent energy dispatch has stringent requirements for low latency and security, which necessitates the development of secure and rapid response methods. In this paper, we combine the edge–end collaboration with container microservices architecture and propose a container and microservice empowered edge–end collaborative secure and rapid response framework for multi-flow aggregated energy dispatch service in a distribution grid. Then, a container selection optimization problem is formulated to minimize the total microservices execution delay. To cope with the dynamic environment such as electromagnetic interference, noise, and workload variation, we propose a microservice container selection algorithm based on an enhanced ant colony with empirical SINR and delay performance awareness. The proposed algorithm benefits from the local and global integrated pheromone updating methods and the empirical performance-based dynamic pheromone and heuristic information updating mechanism. Simulation results demonstrate that the proposed algorithm outperforms the existing methods in average service execution delay and convergence speed.

Publisher

Frontiers Media SA

Reference32 articles.

1. A comparative review of microservices and monolithic architectures;Al-Debagy,2018

2. Efficient resources utilization by different microservices deployment models;Buzato,2018

3. Maaco: a dynamic service placement model for smart cities;Cabrera;IEEE Trans. Serv. Comput.,2023

4. An efficient container management scheme for resource-constrained intelligent IoT devices;Chhikara;IEEE Internet Things J.,2021

5. Container and microservice-based resource management for distribution station area;Deng,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3