Low-carbon planning of urban charging stations considering carbon emission evolution characteristics and dynamic demand

Author:

Jia Rui,Xia Xiangwu,Xuan Yi,Sun Zhiqing,Gao Yudong,Qin Shuo

Abstract

As a new generation of transportation, electric vehicles play an important role in carbon-peak targets. The development of electric vehicles needs the support of a charging network, and improper planning of charging stations will result in a waste of resources. In order to expand the charging network of electric vehicles and give full play to the low-carbon and efficient characteristics of electric vehicles, this paper proposed a charging station planning method that considers the characteristics of carbon emission trends. This paper combined the long short-term memory (LSTM) network with the stochastic impacts by regression on population, affluence, and technology (STIRPAT) model to predict the carbon emission trend and quantified the correlation between the construction speed of a charging station and the evolution characteristics of carbon emission by Pearson’s correlation coefficient. A multi-stage charging station planning model was established, which captures the dynamic characteristics of the charging demand of the transportation network and determines the station deployment scheme with economic and low-carbon benefits on the spatiotemporal scale. The Pareto frontier was solved by using the elitist non-dominated sorting genetic algorithm. The model and solution algorithm were verified by the actual road network in a certain area of Shanghai. The results showed that the proposed scheme can meet the charging demand of regional electric vehicles in the future, improve the utilization rate of charging facilities, and reduce the carbon emission of transportation networks.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3