Adaptive compound power quality disturbance detection via OMD and improved networks for renewable energy systems

Author:

Wu Shuangxi,Liu Yang,Zhu Yu,Xiao Huangqing,Zhang Zhan,Yang Ping

Abstract

In the evolving landscape of power systems, the integration of various renewable energy resources (RERs) introduces complex challenges, particularly in maintaining power quality, which are paramount for system stability. To address this issue, an adaptive power quality disturbance (PQD) detection framework is implemented in this paper. First, the optimal mode decomposition (OMD) is developed to decompose the compound PQDs into sub-ingredients to make them more visible based on the optimal energy ratio. Subsequently, we propose an improved attention convolutional neural network (IACNN), an advanced neural network architecture that leverages an enhanced attention mechanism to expedite the identification of PQDs. Importantly, the sub-ingredients can be strengthened based on the established PQD detection framework. Finally, a series of experiments are conducted under different noise levels and various types of PQDs. The results demonstrate that the proposed framework has profound detection effectivity with about 99.2% accuracy under the simulation condition of 20 dB noise level. In addition, the experimental verification analysis proves a satisfactory real-time performance. This underscores the potential of the proposed framework as a significant advancement in the realm of power quality management, offering a robust solution to the challenges posed by the integration of RERs into modern power systems.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3