Author:
Li Qingsheng,Chen Changming,Zhu Yongqing,Wang Yunchu,Liu Chang,Liang Hongle,Li Zhen,Zhang Zhaofeng,Yang Li
Abstract
In the event of a major power outage in the power systems, there is an urgent need to investigate entire-process coordinated restoration strategies for the transmission systems (TSs) and distribution systems (DSs), aiming to accelerate the restoration speed of generating units, network reconfiguration, and load restoration. Furthermore, it is imperative to address the multiple uncertainties that arise during the restoration process to mitigate potential security risks associated with the restoration. Hence, an adaptive ADMM-based entire-process distributed restoration method of TSs and DSs considering CVaR is proposed in this paper. Firstly, an entire-process distributed restoration model of TSs and DSs considering CVaR is proposed to maximize the total restoration benefits of TSs and DSs. Then, an adaptive ADMM-based distributed solving algorithm for the coordinated restoration model of the TSs and DSs is introduced, which incorporates adaptive penalty parameter adjustments, leading to faster convergence compared to the standard ADMM. Finally, case studies on an improved 179-bus transmission system are employed to verify that the proposed restoration method can achieve higher restoration benefits and faster convergence speed compared to existing restoration models.
Subject
Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献