A Detailed Review Investigating the Mathematical Modeling of Solar Stills

Author:

Ayoobi Ahmadreza,Ramezanizadeh Mahdi

Abstract

In recent years providing potable water for humans has become a major problem, especially in rural and remote regions. In the last few decades, methods of providing potable water using solar radiation have proved that there are methods without negative impacts. Solar is a solution and attractive alternative to still non-potable water without adverse consequences on ecosystems. Researchers have presented the results of their investigations in journals, using experimental, numerical, and analytical forms through the study of solar still performance in native climatic conditions. This paper undertakes an extensive review of recent modeling processes in solar stills and the thermal models proposed and derived for different types of solar stills and the modifications recommended to enhance efficiency and performance. During the selection of appropriate geometry and belonging components, this evaluation demonstrates that numerous designs and characteristics are useful in terms of productivity and efficiency. According to the reviewed results, the definition of concentration ratio is a fundamental concept for evaluating the evaporative heat transfer coefficient in relation to the convective heat transfer coefficient. Employing phase change materials, the results reveal that a large mass of PCM produces less solar still productivity, whereas increasing the PCM to water mass ratio from 10 to 100 reduces productivity by up to 30%. Using a parabolic concentrator, results show that productivity can be increased by 56 and 38.5% in the winter and summer, respectively.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimentation on enhancement of solar still performance;International Journal of Renewable Energy Development;2023-05-23

2. Effects of varying weather parameters on solar still performance;DESALINATION AND WATER TREATMENT;2023

3. An experimental investigation on performance enhancement of twin wedge solar still with concrete basin for increased fresh water production;Energy Sources, Part A: Recovery, Utilization, and Environmental Effects;2022-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3