Experimental investigation on the evolution of bubble behavior in subcooled flow boiling in narrow rectangular channel based on bubble tracking algorithm

Author:

Lv Kezhong,Zhou Linglan,Chen Yong,Gao Hong

Abstract

The nucleate subcooled boiling is an efficient heat transfer form and plays an important role in many cooling applications. The size and distribution of bubbles in subcooled boiling have considerable influence on boiling heat transfer. In this paper, subcooled flow boiling experiment is carried out to investigate the nucleation point density and detachment frequency of bubbles under different system pressure, and the test section is full transparent. Since the whole body of the test section is composed of transparent materials, it can be observed from different directions to obtain high quality images. A bubble tracking algorithm has been developed, which can effectively determine the diameter and position of detached bubbles, thereby inferring the nucleation point density and detachment frequency of bubbles. Besides, the distinctive properties of bubble nucleation within narrow rectangular channel are verified by comparing bubble detachment diameters with existed models. Finally, models for bubble nucleation point and detachment frequency under different operating conditions were proposed and verified through experimental results.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3