Improving cyber-physical-power system stability through hardware-in-loop co-simulation platform for real-time cyber attack analysis

Author:

Wang Xiaoke,Ji Yan,Sun Zhongwang,Liu Chong,Jing Zhichun

Abstract

With advancements in communication systems and measurement technologies, smart grids have become more observable and controllable, evolving into cyber-physical-power systems (CPPS). The impact of network security and secondary equipment on power system stability has become more evident. To support the existing grid toward a smart grid scenario, smart metering plays a vital role at the customer end side. Cyber-Physical systems are vulnerable to cyber-attacks and various techniques have been evolved to detect a cyber attack in the smart grid. Weighted trust-based models are suggested as one of the most effective security mechanisms. A hardware-in-loop CPPS co-simulation platform is established to facilitate the theoretical study of CPPS and the formulation of grid operation strategies. This paper examines current co-simulation platform schemes and highlights the necessity for a real-time hard-ware-in-the-loop platform to accurately simulate cyber-attack processes. This consideration takes into account the fundamental differences in modeling between power and communication systems. The architecture of the co-simulation platform based on RT-LAB and OPNET is described, including detailed modeling of the power system, communication system, and security and stability control devices. Additionally, an analysis of the latency of the co-simulation is provided. The paper focuses on modeling and implementing methods for addressing DDOS attacks and man-in-the-middle at-tacks in the communication network. The results from simulating a 7-bus system show the effectiveness and rationality of the co-simulation platform that has been designed.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3