A two-layer multi-energy management system for microgrids with solar, wind, and geothermal renewable energy

Author:

Xu Da,Zhong Feili,Bai Ziyi

Abstract

The inherent intermittency of high-penetrated renewable energy poses economic and reliable issues of microgrid energy management. This study proposes a two-layer predictive energy management system (PEMS) for high-renewable multi-energy microgrid (MEM). In this MEM, geothermal, solar, and wind energy is converted and conditioned for electricity, thermal, and gas supplies, in which multi-energy complementarities are fully exploited based on electrolytic thermos-electrochemical effects. The proposed microgrid multi-energy management is a complicated and cumbersome problem because of their increasingly tight energy couplings and uncertainties of renewable energy sources (RESs). This intractable problem is thus processed by means of a two-layer PEMS with different time scales, where the system operating costs are minimized in the upper layer and the renewable fluctuations are coped with in the lower layer. Simulation studies on a high-renewable MEM are provided to indicate its effectiveness and superiority over a single time scale scheme. Simulations results show that the operating cost can be reduced by 22.2% with high RESs accommodation.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3