Multimodal attention-based deep learning for automatic modulation classification

Author:

Han Jia,Yu Zhiyong,Yang Jian

Abstract

Wireless Internet of Things (IoT) is widely accepted in data collection and transmission of power system, with the prerequisite that the base station of wireless IoT be compatible with a variety of digital modulation types to meet data transmission requirements of terminals with different modulation modes. As a key technology in wireless IoT communication, Automatic Modulation Classification (AMC) manages resource shortage and improves spectrum utilization efficiency. And for better accuracy and efficiency in the classification of wireless signal modulation, Deep learning (DL) is frequently exploited. It is found in real cases that the signal-to-noise ratio (SNR) of wireless signals received by base station remains low due to complex electromagnetic interference from power equipment, increasing difficulties for accurate AMC. Therefore, inspired by attention mechanism of multi-layer perceptron (MLP), AMC-MLP is introduced herein as a novel AMC method for low SNR signals. Firstly, the sampled I/Q data is converted to constellation diagram, smoothed pseudo Wigner-Ville distribution (SPWVD), and contour diagram of the spectral correlation function (SCF). Secondly, convolution auto-encoder (Conv-AE) is used to denoise and extract image feature vectors. Finally, MLP is employed to fuse multimodal features to classify signals. AMC-MLP model utilizes the characterization advantages of feature images in different modulation modes and boosts the classification accuracy of low SNR signals. Results of simulations on RadioML 2016.10A public dataset prove as well that AMC-MLP provides significantly better classification accuracy of signals in low SNR range than that of other latest deep-learning AMC methods.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference30 articles.

1. A survey of traditional and advanced automatic modulation classification techniques, challenges, and some novel trends;Abdel-Moneim;Int. J. Commun. Syst.,2021

2. An image is worth 16x16 words: Transformers for image recognition at scale;Dosovitskiy,2020

3. Multimodal attention-based deep learning for alzheimer’s disease diagnosis;Golovanevsky,2022

4. Classification of BPSK and QPSK signals with unknown signal level using the Bayes technique;Hong,2003

5. Modulation classification of BPSK and QPSK signals using a two element antenna array receiver;Hong,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3